严蔚敏那本教材上的说法:一个深度为k,节点个数为 2^k – 1 的二叉树为满二叉树。这个概念很好理解,
就是一棵树,深度为k,并且没有空位。
首先对满二叉树按照广度优先遍历(从左到右)的顺序进行编号。
一颗深度为k二叉树,有n个节点,然后,也对这棵树进行编号,如果所有的编号都和满二叉树对应,那么这棵树是完全二叉树。
任意的一个二叉树,都可以补成一个满二叉树。这样中间就会有很多空洞。在广度优先遍历的时候,如果是满二叉树,或者完全二叉树,这些空洞是在广度优先的遍历的末尾,所以,但我们遍历到空洞的时候,整个二叉树就已经遍历完成了。而如果,是非完全二叉树,
我们遍历到空洞的时候,就会发现,空洞后面还有没有遍历到的值。这样,只要根据是否遍历到空洞,整个树的遍历是否结束来判断是否是完全的二叉树。
算法如下:
bool is_complete(tree *root) { queue q; tree *ptr; // 进行广度优先遍历(层次遍历),并把NULL节点也放入队列 q.push(root); while ((ptr = q.pop()) != NULL) { q.push(ptr->left); q.push(ptr->right); } // 判断是否还有未被访问到的节点 while (!q.is_empty()) { ptr = q.pop(); // 有未访问到的的非NULL节点,则树存在空洞,为非完全二叉树 if (NULL != ptr) { return false; } } return true; }